VIP Cheatsheet: Probability

Afshine AMIDI and Shervine AMIDI

September 8, 2020

Introduction to Probability and Combinatorics

 \Box Sample space – The set of all possible outcomes of an experiment is known as the sample space of the experiment and is denoted by S.

 \Box Event – Any subset E of the sample space is known as an event. That is, an event is a set consisting of possible outcomes of the experiment. If the outcome of the experiment is contained in E, then we say that E has occurred.

 \Box Axioms of probability – For each event E, we denote P(E) as the probability of event E occurring. By noting E_1, \dots, E_n mutually exclusive events, we have the 3 following axioms:

(1)
$$0 \leq P(E) \leq 1$$
 (2) $P(S) = 1$ (3) $P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$

Dermutation – A permutation is an arrangement of r objects from a pool of n objects, in a given order. The number of such arrangements is given by P(n, r), defined as:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Combination – A combination is an arrangement of r objects from a pool of n objects, where the order does not matter. The number of such arrangements is given by C(n, r), defined as:

$$\boxed{C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}}$$

Remark: we note that for $0 \leq r \leq n$, we have $P(n,r) \geq C(n,r)$.

Conditional Probability

Bayes' rule – For events A and B such that P(B) > 0, we have:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Remark: we have $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

□ **Partition** – Let $\{A_i, i \in [\![1,n]\!]\}$ be such that for all $i, A_i \neq \emptyset$. We say that $\{A_i\}$ is a partition if we have:

$$\forall i \neq j, A_i \cap A_j = \emptyset \quad \text{and} \quad \bigcup_{i=1}^n A_i = S$$

Remark: for any event B in the sample space, we have
$$P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$$
.

D Extended form of Bayes' rule – Let $\{A_i, i \in [\![1,n]\!]\}$ be a partition of the sample space. We have:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

 \Box Independence – Two events A and B are independent if and only if we have:

$$P(A \cap B) = P(A)P(B)$$

Random Variables

 \Box Random variable – A random variable, often noted X, is a function that maps every element in a sample space to a real line.

 \Box Cumulative distribution function (CDF) – The cumulative distribution function F, which is monotonically non-decreasing and is such that $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$, is

$$F(x) = P(X \leqslant x)$$

Remark: we have $P(a < X \leq B) = F(b) - F(a)$.

 \Box **Probability density function (PDF)** – The probability density function f is the probability that X takes on values between two adjacent realizations of the random variable.

 \square Relationships involving the PDF and CDF – Here are the important properties to know in the discrete (D) and the continuous (C) cases.

Case	$\mathbf{CDF} \ F$	PDF f	Properties of PDF	
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X = x_j)$	$0 \leqslant f(x_j) \leqslant 1$ and $\sum_j f(x_j) = 1$	
(C)	$F(x) = \int_{-\infty}^{x} f(y) dy$	$f(x) = \frac{dF}{dx}$	$f(x) \ge 0$ and $\int_{-\infty}^{+\infty} f(x)dx = 1$	

 \Box Variance – The variance of a random variable, often noted Var(X) or σ^2 , is a measure of the spread of its distribution function. It is determined as follows:

$$\operatorname{Var}(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

 \Box Standard deviation – The standard deviation of a random variable, often noted σ , is a measure of the spread of its distribution function which is compatible with the units of the actual random variable. It is determined as follows:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

value E[X], generalized expected value E[q(X)], k^{th} moment $E[X^k]$ and characteristic function function f_{XY} , we have: $\psi(\omega)$ for the discrete and continuous cases:

Case	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_i f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^n f(x_i)e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$

Remark: we have $e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$.

 \Box Revisiting the k^{th} moment – The k^{th} moment can also be computed with the characteristic function as follows:

$$E[X^k] = \frac{1}{i^k} \left[\frac{\partial^k \psi}{\partial \omega^k} \right]_{\omega=0}$$

 \Box Transformation of random variables – Let the variables X and Y be linked by some function. By noting f_X and f_Y the distribution function of X and Y respectively, we have:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

 \Box Leibniz integral rule – Let g be a function of x and potentially c, and a, b boundaries that may depend on c. We have:

$$\left| \frac{\partial}{\partial c} \left(\int_{a}^{b} g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_{a}^{b} \frac{\partial g}{\partial c}(x) dx \right|$$

 \Box Chebyshev's inequality – Let X be a random variable with expected value μ and standard deviation σ . For $k, \sigma > 0$, we have the following inequality:

$$P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}$$

Jointly Distributed Random Variables

 \Box Conditional density – The conditional density of X with respect to Y, often noted $f_{X|Y}$, is defined as follows:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

 \Box Independence – Two random variables X and Y are said to be independent if we have:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

🗆 Expectation and Moments of the Distribution – Here are the expressions of the expected 🛛 Marginal density and cumulative distribution – From the joint density probability

CaseMarginal densityCumulative function(D)
$$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$$
 $F_{XY}(x, y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$ (C) $f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x, y) dy$ $F_{XY}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x', y') dx' dy'$

D Distribution of a sum of independent random variables – Let $Y = X_1 + ... + X_n$ with $X_1, ..., X_n$ independent. We have:

$$\psi_Y(\omega) = \prod_{k=1}^n \psi_{X_k}(\omega)$$

 \Box Covariance – We define the covariance of two random variables X and Y, that we note σ_{XY}^2 or more commonly $\operatorname{Cov}(X,Y)$, as follows:

$$\operatorname{Cov}(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \Box Correlation – By noting σ_X, σ_Y the standard deviations of X and Y, we define the correlation between the random variables X and Y, noted ρ_{XY} , as follows:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Remarks: For any X, Y, we have $\rho_{XY} \in [-1,1]$. If X and Y are independent, then $\rho_{XY} = 0$.

Main distributions – Here are the main distributions to have in mind:

Type	Distribution	PDF	$\psi(\omega)$	E[X]	$\operatorname{Var}(X)$
(D)	$\begin{aligned} X \sim \mathcal{B}(n,p) \\ \text{Binomial} \end{aligned}$	$P(X = x) = \binom{n}{x} p^{x} q^{n-x}$ $x \in \llbracket 0, n \rrbracket$	$(pe^{i\omega}+q)^n$	np	npq
	$\begin{array}{l} X \sim \mathrm{Po}(\mu) \\ \mathrm{Poisson} \end{array}$	$P(X = x) = \frac{\mu^x}{x!} e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
(C)	$X \sim \mathcal{U}(a, b)$ Uniform	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
	$\begin{aligned} X \sim \mathcal{N}(\mu, \sigma) \\ \text{Gaussian} \end{aligned}$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \operatorname{Exp}(\lambda)$ Exponential	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

STANFORD UNIVERSITY